If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X^2-22X-140=0
a = 1; b = -22; c = -140;
Δ = b2-4ac
Δ = -222-4·1·(-140)
Δ = 1044
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1044}=\sqrt{36*29}=\sqrt{36}*\sqrt{29}=6\sqrt{29}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-22)-6\sqrt{29}}{2*1}=\frac{22-6\sqrt{29}}{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-22)+6\sqrt{29}}{2*1}=\frac{22+6\sqrt{29}}{2} $
| (3x-29)+75=180 | | 2y-45=- | | 6x+140=540 | | 3-1/2(x-8)=-21 | | -2(9y-9)+6y=4(y+5) | | -2v+14=8(v+3) | | 45.4=4x+39 | | 585.25=4.25x+54 | | 3x+8=4x-17 | | 5x+16/4+x/2=4x+2 | | Y+7=24-2y | | 1(-2)+3y=4 | | 6x+5-3(x+2=5(x+3-7(x-2) | | 7a+25=15a+9a | | 8t+9=5t+7 | | 9h+4/2=8h | | 2^x-3+4=132 | | 3-x^2=3 | | 5x5x+1=125 | | 9q+10=37 | | 7*x=16 | | 12y+3=45-9y | | 3z=5=7-2 | | 5y-2(5+2y)=7y-16 | | -3.5(10x-2)=-262.5 | | x-2*0=8 | | x+2(4x+9)=24 | | 9-3x+10x=-26 | | 2x+5+140=180 | | R(x)=220x-0.2x^2 | | 0.5(2-4x)=13 | | X=0.9x+90 |